docker-- - 15

<71 JUNE 22-23

Platform Engineering @ PayPal

> 165 Million active PayPal customer accounts
> Presence in 203 markets and 100 currencies
> $235 Billion payment volume

> 12.5 million payment transactions every day

Support ever increasing scale of operations

> Several thousand OpenStack servers across multiple data centers

> More than 3000 PayPal developers supported

> Thousands of application deployments performed every day

Boost developer productivity

Y VYV

YV YY

Last year at DockerCon 2014...

Thousands of VMs dedicated to run Jenkins!
Utilization is less than 5% ®
VMs idle most of time (no one runs Cl builds frequently)

VM sprawl and poor resource utilization

Polyglot application stacks (Java, C++, Node.js, Python, Scala)
Different OS flavors (Ubuntu & RHEL)

Software version conflicts

Special hardware requirements

Build slave management and maintenance is a nightmare

How PaaS Orchestrates The Docker PDLC

Dev/QA "
4 u Y

OpenStack

Pre-Prod """"" Prod

I
4 n N]
1
Cinior Gl tis
i er Cluster
M — Apache Traffic m
8 B Server Cluster

Elasticsearch Elasticsearch /

Cluster
M M -

e S—_ & Promotion £ t:s A
, —ap| Docker Registry —Pp| Service —=p | Docker Registry Apache Traffic [
Jenkins C' Cluster WIS C’Usta Au'ln % . Server Cluster P

—a o .

OpenStack
L Swift Cluster

=
o \ === === === == = g Firewal

OpenStack 1

4 N
_Swift Cluster tis
Apache Traffic [~
L Server Cluster)

)
A chaln of approvals by QE and release engineering teams | Developers use the Paa$ to deploy the Docker
Is required before the application Docker images can be | image on the production application server pools
promoted to the pre-prod Docker Registry by PayPal's PaaS. | auto-resolving to the nearest ATS cache proxy server
The Promotion Service sclely has the access privileges to |
push Docker images into the pre-prod Docker Registry

Development teams across PayPal can create application Docker
Images and run C1 jobs which bulld, tag & push these Docker images
Into the QA Docker Registry. PayPal's PaaS automatically notifies the
the QE and release engineering teams that an image is ready for
deployment

W o ——————

Building & Storing Docker Images

Storing Docker images into a private registry

e o & o
——p Docker > Docker -» OpenStack

Jenkins Cl cli/daemon Registry Swift
Jenkins CI job initiates Docker daemon builds, Docker registry processes Swift stores the Docker
the Docker build via the tags and pushes the app requests and writes the image layer and other
Docker cli client Docker image into the layers into Swift storage metadata files on a

Docker registry distributed file system

Indexing & Searching Docker images

E% B o i
Docker > Elasticsearch > OpenStack ——p Kibana

Registry Index Cinder Dashboard
Docker registry stores Elasticsearch stores Elasticsearch cluster index Provides have the ability
the image layer metadata the image layer metadata data is persisted using the to query and view stats
via ElasticSearch HTTP APIs in the distributed indexes OpenStack Cinder block and metrics on all Docker

backed by OpenStack storage registry operations

Cinder storage

Docker Registry HA Setup

Van ™

4 “~ \\
f,
OpenStack
Swift Cluster

|/

N >
Features

Supervisord as the process manager
Logrotate for registry and nginx logs
Elasticsearch plugin for indexing
Swift plugin for storage

Basic authentication

> Ansible playbook for setting up the registry
> HA running behind F5 load balancer

> Docker load used to deploy the registry for
the first time

> Swift auto-sync between data centers

Docker Image Index

= // /,
@ & @ 8 @ O
Zookeeper Elasticsearch OpenStack
Cluster Cluster Cinder Cluster
Challenges Solutions

> Production firewalls block multicast
clustering protocol

> ES sniffing timeout issues when ES
nodes were unavailable

> ES split-brain problems with
clustering

> ES indexing plugin for the
Docker Registry

> Zookeeper transport plugin for
ES Python client

> Persisting ES index data using
OpenStack Cinder

Cross-datacenter View

Firewall

Server Cluster

DC1 ATS ' DC2 ATS
‘
N ‘
©® 8 : @ (2]
Load / : Load
- Balancer : Balancer
@ 0 { | /
\[OpenStack & ~ E \ OpenStack
Cinder Cluster @ tis : Cinder Cluster
Apache Traffic |
Server Cluster : Apache Traffic
:
1
]
1

Apache Traffic

r@ (= \Server Cluster /
OpenStack =

L Swift Cluster /J / L @ n

P ~ L B8 COzenitack

y ~N Load inder Cluster

@ & Balancer
Zookeeper

. %JSth M e

{, " N\
7 N
@ 8 @ 0
Elasticsearch OpenStack
Cluster _ Cinder Cluster J

Deploying Docker Images In Production

e

» Y
t.s
© |Apache Traffic Server| @

NP ----- ATy)
o o ‘0 | o

Docker

Server | wmon _ :
’ 6 — __"/Hl-;a:h'r H:".'«r'.-'\}_ I -__f — * DOCKer RegIStry
E |\ Plugin / g h J

-
. J
App server initiates the Docker pull Registry responds with the Docker :;rasdrenro'(:;hc?{::w fo):';e[A: T: Sc r;ﬁrr\\’(:;:?;‘r;l;:jsg:)nse
command for the image to the ATS image data the reqist p%r' in address
endpoint over htlps egisiry ong
If there is a cache miss then ATS ATS caches the registry response data ATS proxies the registry response 1o the
proxies the request 1o the registry as configured in SSD storage Spplication server
over https
Features
> DNS-based ATS discovery per DC > Custom SSL certs

> Header rewrite plugin > ATS Ansible deployment

> (Custom Cache rules

Dockerized Development Environments

Docker Developer Experience

.

ﬁ Boot2Docker YM

Dev Staging
Container Container

Dev Source
Service Code
Endpoints

> Building an application stack should be simple, but it’s not!

QA
Service
Endpoints

> Development environments are snow-flakes

> Development environments should be self-contained

Container with Dev configuration

1 v devweb:

2 image: private-registry/stacks/kraken_dev
3 command: /docker/init.sh

4+ volumes:

) - /:/src

6 - /src/node_modules

7 - /src/.npm

8 - /src/.nvm

9 - /src/.node-gyp

10 - /src/tmpnpm

11+ environment:

12 - NODE_ENV=development
13 - DEPLOY_ENV=development
14 + ports:

15 - "8000:8000"

16

Container with Stage configuration

1 stageweb:

2 image: private-registry/stacks/kraken_dev
3 command: /docker/init.sh

4 ports:

5 - "80:80"

6 - "443:443"

7 - "8000:8000"

8 volumes:

9 - .:/src

10 - /src/node_modules

11 - /src/.npm

12 - /src/.nvm

13 - /src/.node-gyp

14 - /src/tmpnpm

15 - /src/.build

16 - /src/.builds

17 - /src/target

18 - /src/.packageignore_tmp

19 - /src/deploylogs

20 environment:

21 - NPM_CACHE=/src/.npm

22 - NODE_ENV=staging

23 - DEPLOY_ENV=STAGE

24 - BASE_DIR=/src

25 - NPM_TMP=/src/tmpnpm

26 - NVM_DIR=/src/.nvm

27 - NPM_REGISTRY=http://internal.npm.reg
28 hostname: boot2docker

29 domainname: slc@l.dev.ebayc3.com

Demo

Thank you

Mohit Soni Ashish Hunnargikar
Software Engineer Software Engineer

. @hunnar
@mosoni 9

H#dockercon

docker-< . 15

<71 JUNE 22-23

