
Running Aground:
Debugging Docker in production
Bryan Cantrill (@bcantrill), CTO, Joyent

The Docker revolution

• While OS containers have been around for over a decade, Docker
has brought the concept to a much broader audience

• Docker has used the rapid provisioning and shared filesystem of
containers to allow developers to think operationally

- Deployment procedures can be encoded via an image

- Images can be reliably and reproducibly deployed as containers
• Docker is doing to apt what apt did to tar

Docker at Joyent

• At Joyent, we have run SmartOS-based containers on the metal
and in multi-tenant production since ~2006

• We wanted to create a best-of-all-worlds platform: the developer
ease of Docker on the production-grade substrate of SmartOS

- We developed a Linux system call interface for SmartOS, allowing
SmartOS to run Linux binaries at bare-metal speed

- In March 2015, we introduced Triton, our (open source!) stack
that deploys Docker containers directly on the metal

- Triton virtualizes the notion of a Docker host (i.e., “docker ps”
shows all of one’s containers datacenter-wide)

Docker + microservices

• Docker is particular apt at deploying microservices: small, well-
defined services that do one thing and do it well

• While the term provokes some degree of nerd rage, it is merely a
new embodiment of an old idea: the Unix Philosophy

• What does the container + microservices revolution mean for how
we debug programs and systems?

Debugging: An even older idea

Debugging: An even older idea

 Sir Maurice Wilkes, 1913 - 2010

Debugging: An even older idea

As soon as we started programming, we
found to our surprise that it wasn’t as
easy to get programs right as we had
thought. Debugging had to be discovered.
I can remember the exact instant when I
realized that a large part of my life from
then on was going to be spent in finding
mistakes in my own programs.

— Sir Maurice Wilkes, 1913 - 2010

Debugging Docker

• When deploying Docker + microservices, there is an unstated truth:
you are developing a distributed system

• While more resilient to certain classes of force majeure failure,
distributed systems remain vulnerable to software defects

• Worse, distributed systems are harder to debug — and are more
likely to exhibit behavior non-reproducible in development

• Docker forces us to change the way we debug systems: we must
debug not in terms of sick pets but rather sick cattle

Software failure

• Different failure modes have different implications for debugging!
• And software has many different failure modes:

- Fatal failure (segmentation violation, uncaught exception)

- Non-fatal failure (gives the wrong answer, performs terribly)

- Explicit failure (assertion failure, error message)

- Implicit failure (cheerfully does the wrong thing)

Taxonomizing software failure
Implicit

Explicit

FatalNon-fatal

Segmentation violation
Bus Error
Panic
Type Error
Uncaught Exception

Assertion failure
Process explicitly aborts
Exits with an error code

Gives the wrong answer
Returns the wrong result

Leaks resources
Stops doing work

Performs pathologically

Emits an error message
Returns an error code

Debugging fatal failure

• When software fails fatally, we know that the software itself is
broken — its state has become inconsistent

• By saving in-memory state to stable storage, the software can be
debugged postmortem

• To debug, one starts with the invalid state and reasons backwards
to discover a transition from a valid state to an invalid one

• This technique is so old, that the terms for this saved state dates
back to the dawn of the computing age: a core dump

• Not as low-level as the name implies! Modern high-level languages
(e.g., node.js and Go) have capabilities for postmortem debugging

Debugging fatal failure: Containers

• Postmortem analysis lends itself very well to the container model:

- There is no run-time overhead; overhead (such as it is) is only at
the time of death

- The container can be safely (automatically!) restarted; the core
dump can be analyzed asynchronously

- Debugging tooling can be made arbitrarily rich, as it need not
exist within the failing container

Core dump management in Docker

• In Triton, all core dumps are automatically stored and then
uploaded into a system that allows for analysis, tagging, etc.

• This has been invaluable for debugging our own services!
• Outside of Triton, the lack of container awareness around

core_pattern in the Linux kernel is problematic for Docker: core
dumps from Docker are still a bit rocky (viz. docker#11740)

• Docker-based core dump management (e.g., “docker dumps”?)
would be a welcome addition!

Debugging non-fatal failure

• There is a solace in fatal failure: it always represents a software
defect at some level — and the inconsistent state is static

• Non-fatal failure can be more challenging: the state is valid and
dynamic — and it can be difficult to separate symptom from cause

• Non-fatal failure must still be understood empirically!
• Debugging in vivo requires that data be extracted from the system

— either of its own volition (e.g., via logs) or by coercion (e.g., via
instrumentation)

Debugging explicit, non-fatal failure

• When failure is explicit (e.g., an error or warning message), it
provides a very important data point

• If failure is non-reproducible or otherwise transient, analysis of
explicit software activity becomes essential

• Action in one container will often need to be associated with
failures in another

• For modern software, this becomes log analysis, and is an essential
forensic tool for understanding explicit failure

Log management in Docker

• “docker logs” is fine when the problem is simple — but more
complicated issues will require more sophisticated analysis

• Deeper analysis requires logs be moved out of a container
• Docker is not prescriptive about how this is done, and there are

many ways to do it:

- Logs can be shipped from a process within the container

- Logs can be pulled from a container that is sharing a volume
• Log management techniques that rely on Docker host manipulation

should be considered an anti-pattern!

Aside: Docker host anti-patterns

• In the traditional Docker model, Docker hosts are virtual machines
to which containers are directly provisioned

• It may become tempting to manipulate Docker hosts directly, but
doing this entirely compromises the Docker security model

• Worse, compromising the security model creates a VM dependency
that makes bare-metal containers impossible

• And ironically, Docker hosts become pets: the reasons for
backdooring through the Docker host come to resemble the
arguments made by those who resist containerization entirely!

Debugging implicit, non-fatal failure

• Problems that are both implicit and non-fatal represent the most
time-consuming, most difficult problems to debug because the
system must be understood against its will

- Wherever possible make software explicit about failure!

- Where errors are programmatic (and not operational), they
should always induce fatal failure!

• Data must be coerced from the system via instrumentation

Instrumenting production systems

• Traditionally, software instrumentation was hard-coded and static
(necessitating software restart or — worse — recompile)

• Dynamic system instrumentation was historically limited to system
call table (strace/truss) or packet capture (tcpdump/snoop)

• Effective for some problems, but a poor fit for ad hoc analysis
• In 2003, Sun developed DTrace, a facility for arbitrary, dynamic

instrumentation of production systems that has since been ported
to Mac OS X, FreeBSD, NetBSD and (to a degree) Linux

• DTrace has inspired dynamic instrumentation software in other
systems (see Brendan Gregg’s talks for details)

Instrumenting Docker containers

• In Docker, instrumentation is a challenge as containers may not
include the tooling necessary to understand the system

• Host-based techniques for instrumentation may be tempting, but
(again!) they should be considered an anti-pattern!

• DTrace has a privilege model that allows it to be safely (and
usefully) used from within a container

• In Triton, DTrace is available from within every container — one
can “docker exec -it bash” and then debug interactively

Debugging Docker in production

• Debugging Docker in production requires us to shift our thinking
from sick pets to sick cattle

• Different types of failures necessitate different techniques:

- Fatal failure is best debugged via postmortem analysis — which is
particular appropriate in an all-container world

- Non-fatal failure necessitates log analysis and dynamic
instrumentation

• The ability to debug production problems is essential for Docker to
leap the chasm into broad production deployment!

Thank you
Bryan Cantrill

@bcantrill, bryan@joyent.com

mailto:bryan@joyent.com
mailto:bryan@joyent.com

